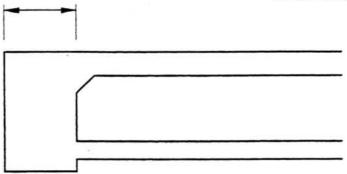

Prestress Clearances for CIP P/S Box Girder Structures

This memo is divided into three sections, anchorage zone clearances, tendon curvature, and determination of maximum eccentricities.

Section A
Clearance at
Anchorage Zones

Recommendations for Stems and Anchorage Space for Prestressed "CIP" Box Girders

Kips per Girder	Stem Thickness	Anchorage Space Requirements	
"P _{jack} "	(Inches)	Width (Inches)	Height (Inches)
0-1,000	12	27	27
1,000 - 1,500	12	27	41
1,500 - 2,000	12	27	54
2,000 - 2,500	12	27	68
2,500 - 3,500	12	27	81
3,500 - 4,000	12	27	89
4,000 - 5,000	12	27	105


Supersedes Memo to Designers 11-28 dated May 1989

Section A continued

Recommended Diaphragm Dimensions

Skew (Degrees)	Min. Diaphragm Thickness at Abutment	At Hinge	
0 – 14	2' - 6"	2' - 0" *	
15 – 29	3' - 3"	2' - 9"	
30 – 44	4' - 0"	3' - 6"	
45 – 55	4' - 9"	4' - 3"	

^{*} To accommodate spiral.

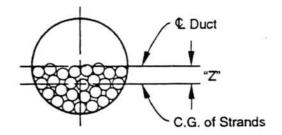
Section B Tendon and Duct Curvature

The use of sharp curvatures for the tendon path in the vertical plane can result in large forces normal to the duct. Where tendons are bundled, these forces can squash the ducts. Most CIP/PS structures have fairly flat cable paths, with the exception of post-tensioned bent caps.

The cable path should have an equivalent circular curvature radius greater than sixty feet. If less than sixty feet, normal forces due to the prestressing should be investigated. Possible solutions include greater duct clearances than required by Standard Plan B8-5, or extra reinforcement around the duct in the region of sharp curvature.

. .

Section C


Maximum Cable
Path Eccentricities

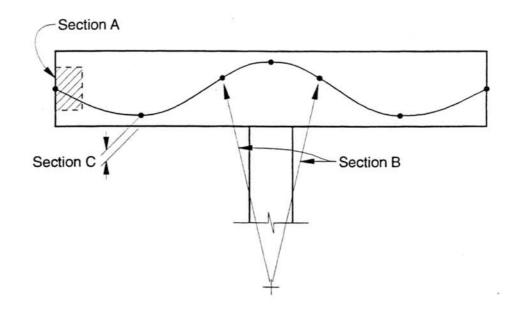
Use the recommended "D" value from the attached "D Chart" as a first trial. Revise "D" as required, following determination of "P_{jack}". Run analysis again based on the new "D" value.

See Memo to Designers 17-146 for prestressing requirements for the Southern Pacific Transportation Co. (SPTCo.) for railroad bridges.

The amount of tendon offset within the duct (the "Z" value) considered in charts is as follows:

Duct Size	"Z" Value
3" OD and less	1/2"
Over 3" OD to 4"	3/4"
Over 4" OD	1"

Jerry A. McKee Design Supervisor

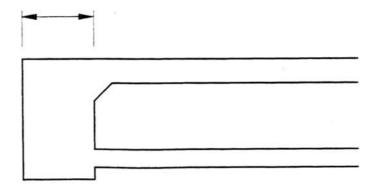

Floyd L. Mellon Design Supervisor

Attachments EKT:jgf

11-28 Prestress Clearances for CIP P/S Box Girder Structures

This memo is divided into three sections, anchorage zone clearances, tendon curvature, and determination of maximum eccentricities.

Section A Clearance at Anchorage Zones


Recommendations for Stems and Anchorage Space for Prestressed "CIP" Box Girders

kN per Girder Stem Thickn	Stem Thickness	Anchorage Space	ce Requirements
"P _{jack} " kN	(mm)	Width (mm)	Height (mm)
0 - 4500	300	700	700
4 500 - 6 750	300	700	1050
6750 - 9000	300	700	1400
9 000 - 11 250	300	700	1750
11 250 - 15 750	300	700	2050
15 750 - 18 000	300	700	2250
18 000 - 22 500	300	700	2650

Recommended Diaphragm Dimensions

Skew (Degrees)	Min. Diaphragm Thickness at Abutment (mm)	At Hinge (mm)
00 – 14	800	600 *
15 – 29	1000	850
30 – 44	1200	1050
45 – 55	1500	1300

^{*} To accommodate spiral.

Section B Tendon and Duct Curvature

The use of sharp curvatures for the tendon path in the vertical plane can result in large forces normal to the duct. Where tendons are bundled, these forces can squash the ducts. Most CIP/PS structures have fairly flat cable paths, with the exception of post-tensioned bent caps.

The cable path should have an equivalent circular curvature radius greater than 18 meters. If less than 18 meters, normal forces due to the prestressing should be investigated. Possible solutions include greater duct clearances than required by Standard Plan B8-5, or extra reinforcement around the duct in the region of sharp curvature.

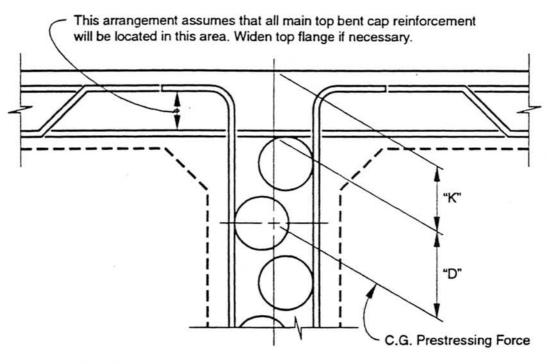
Section C Maximum Cable Path Eccentricities

Use the recommended "D" value from the attached "D Chart" as a first trial. Revise "D" as required, following determination of "P_{jack}". Run analysis again based on the new "D" value.

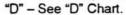
See Memo to Designers 17-140 for prestressing requirements for the Southern Pacific Transportation Co. (SPTCo.) for railroad bridges.

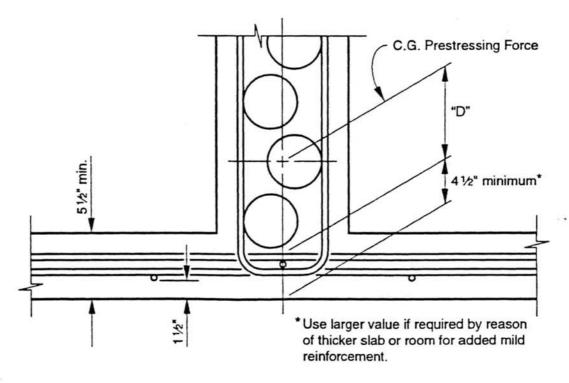
The amount of tendon offset within the duct (the "Z" value) considered in charts is as follows:

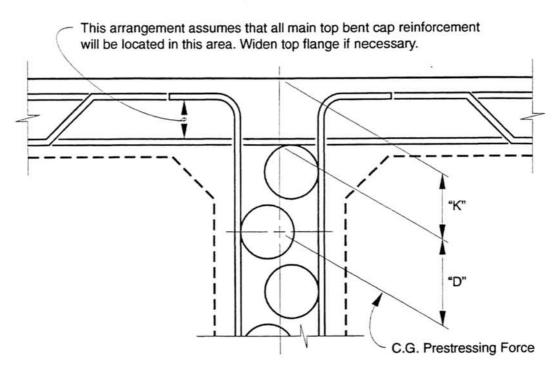
Duct Size	"Z" Value
75 mm OD and less	13 mm
Over 75 mm OD to 100 mm	20 mm
Over 100 mm OD	26 mm

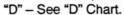

Richard D. Land

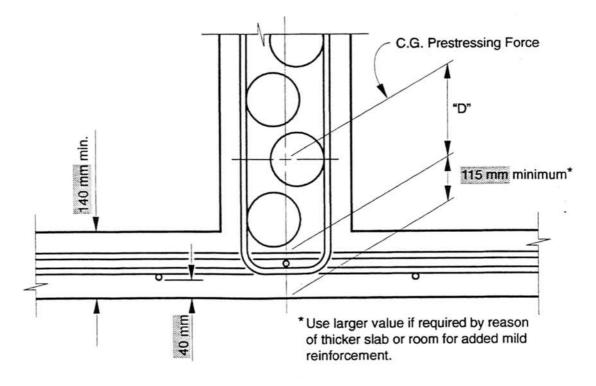
Shannon H. Post


Attachments


EKT/FH:jlw

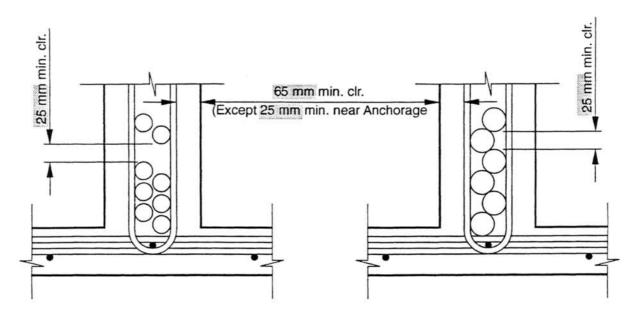

"K" - Varies depending on location of deck or bent reinforcing steel.



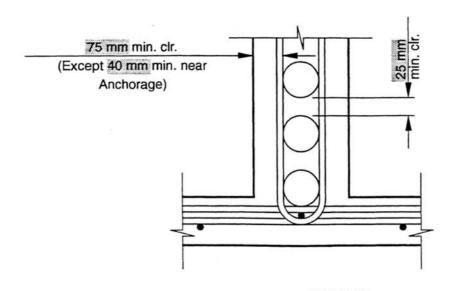


ATTACHMENT 1

"K" - Varies depending on location of deck or bent reinforcing steel.

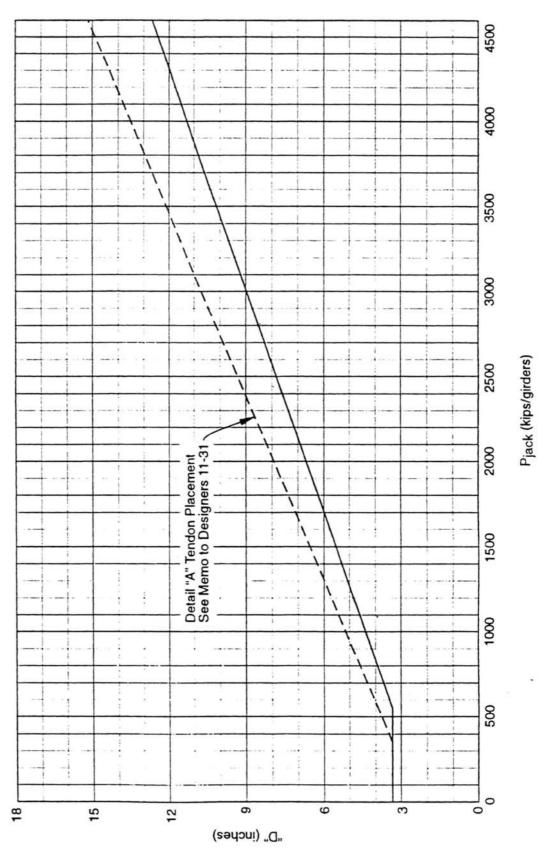


ATTACHMENT 2


Clearance Requirements for Ducts

Shown for a 300 mm girder stem. Same minimum clearances apply to other stem widths.

DUCTS 75 mm O.D. AND LESS


DUCTS OVER 75 mm O.D. TO 115 mm O.D.

DUCTS OVER 115 mm O.D.

"D" Chart for Cast-In-Place Girders

ATTACHMENT 3

20000

18000 16000 "D" Chart for Cast-In-Place Girders 14000 12000 10000 Detail "A" Tendon Placement See Memo to Designers 11-31 9000

Pjack (kN per girder)

(ww) "D" (90

8

300

400